Pristionchus pacificus is an attractive model organism for laboratory studies based on several technical features:
The following tools have been established over the years that allow mechanistic studies in this nematode:
4. Forward and reverse genetic tools are well-established (Tian et al., 2008)
5. Microinjection of DNA results in DNA-mediated transformation (Schlager et al., 2009)
6. The CRISPR-Cas9 system works efficiently for genome editing (Witte et al., 2015, Han et al., 2020)
7. The P. pacificus genome has been sequenced a decade ago (Diederich et al., 2008)
8. Single worm transcriptomic altlas (Sun et al., 2021)
9. A de novo assembly from single molecule sequencing provided a chromosome-scale genome
assembly of P. pacificus (Rödelsperger et al., 2017, Athanasouli et al., 2020)
10. De novo assembly of relevant natural isolation of P.pacificus (submitted)
We are permanently improving our methodological platform in the following areas:
Igreja, C., Loschko, T., Schäfer, A., Sharma, R., Quiobe, S. P., Aloshy, E., Witte, H. & Sommer, R. J. (2022): Application of ALFA-tagging in the nematode model organisms Caenorhabditis elegans and Pristionchus pacificus. Cells, 11, 3875.
Wighard, S. S., Athanasouli, M., Witte, H., Rödelsperger, C. & Sommer, R. J. (2022): A new hope: A hermaphrotditic nematode enables analysis of a recent whole genome duplication event. Genome Biology and Evolution, 14, evac169.
Lo, W.-S., Roca, M., Dardiry, M., Mackie, M., Eberhardt, G., Witte, H., Hong, R., Sommer, R. J. & J. W. Lightfoot (2022): Evolution and diversity of TGF-β signalling pathways are linked with novel developmental and behavioural traits. Molecular Biology and Evolution, 39: msac252.
Röseler, W., Collenberg, M., Yoshida, K., Lanz, C., Sommer, R.J. & Rödelsperger, C. (2022): The improved genome of the nematode Parapristionchus giblindavisi provides insights into lineage-specific gene family evolution. G3, 12, jkac215.
Sun, S., Rödelsperger, C. & R. J. Sommer (2021): Single worm transcriptomics identifies a developmental core network of oscillating genes with deep conservation across nematodes. Genome Research, 31, 1590-1601.
Athanasouli, M., Witte, H., Weiler, C., Loschko, T., Eberhardt, G., Sommer, R. J. and C. Roedelsperger (2020): Comprataive genomics and community curation further improve gene annotation in te nematode Pristionchus pacificus. BMC Genomics, 21, 708.
Han, Z., Lo, W.-S., Lightfoot, J. W., Witte, H., Sun, S. & R. J. Sommer (2020): Improving trangenesis efficiency and CRISPR-associated tools through codon optimization and native intron addition in nematodes. Genetics, 216, 947-956.
Witte, H., Moreno, E., Rödelsperger, C., Kim, J., Kim, J.-S., Streit A. & Sommer, R. J. (2015): Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Dev Genes & Evol., 225, 55-62.
Schlager, B., Wang, X., Braach, G. & Sommer, R. J. (2009): Molecular cloning of a dominant roller mutant and establishment of DNA-mediated transformation in the nematode model Pristionchus pacificus. Genesis, 47, 300-304.
Dieterich, C., Clifton, S. W., Schuster, L. N.,Chinwalla, A., Delehaunty, K., Dinkelacker, I., Fulton, L., Fulton, R., Godfrey, J., Minx, P., Mitreva, M., Roeseler, W., Tian, H., Witte, H., Yang, S. P., Wilson, R. K., Sommer, R. J. (2008): The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nature Genetics, 40, 1193-1198.
Tian, H, Schlager, B., Xiao, H. & Sommer, R. J. (2008): Wnt signaling induces vulva development in the nematode Pristionchus pacificus. Current Biology, 18, 142-146.