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Summary

Background: Nematode vulva formation provides a par-
adigm to study the evolution of pattern formation
and cell-fate specification. The Caenorhabditis elegans
vulva is generated from three of six equipotent cells
that form the so-called vulva equivalence group. During
evolution, the size of the vulva equivalence group has
changed: Panagrellus redivivus has eight, C. elegans
six, and Pristionchus pacificus only three cells that are
competent to form vulval tissue. In P. pacificus, pro-
grammed cell death of individual vulval precursor cells
alters the size of the vulva equivalence group.
Results: We have identified the genes controlling this
cell-death event and the molecular mechanism of the
reduction of the vulva equivalence group. Mutations in
Ppa-hairy, a gene that is unknown from C. elegans,
result in the survival of two precursor cells, which
expands the vulva equivalence group. Mutations in
Ppa-groucho cause a similar phenotype. Ppa-HAIRY
and Ppa-GROUCHO form a molecular module that re-
presses the Hox gene Ppa-lin-39 and thereby reduces
the size of the vulva equivalence group. The C. elegans
genome does not encode a similar hairy-like gene, and
no typical HAIRY/GROUCHO module exists.
Conclusions: We conclude that the vulva equivalence
group in Pristionchus is patterned by a HAIRY/GROUCHO
module, which is absent in Caenorhabditis. Thus,
changes in the number, structure, and function of nema-
tode hairy-like transcription factors are involved in the
evolutionary alteration of this equivalence group.

Introduction

Vulva formation in Caenorhabditis elegans provides
a molecular framework for studying pattern formation,
cell-fate specification, developmental competence,
and induction. Interestingly, all of these aspects of vulva
formation are subject to evolutionary change. To identify
the genetic and molecular alterations that control evolu-
tionary changes of developmental processes, different
species have to be compared with one another. The
model organism C. elegans and the satellite species
P. pacificus are both amenable to forward and reverse
genetic analysis and provide a platform for functional
comparative studies [1–4]. P. pacificus propagates as
a self-fertilizing hermaphrodite and has a 4 day life cycle
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at 20�C. An integrated genome map of P. pacificus con-
tains a genetic linkage map of more than 500 molecular
markers and a physical map of nearly 10,000 finger-
printed BAC clones [3–5]. A whole-genome sequencing
project is currently ongoing (http://www.nhgri.nih.gov/
12511858).

The nematode vulva is a derivative of the ventral epi-
dermis, which consists of 12 precursor cells, called
P(1–12).p, in all nematodes studied to date (Figure 1A).
In C. elegans, developmental competence and induction
are the two key features of vulva formation. First, a group
of six equipotent cells is specified as a vulva equiva-
lence group (VEG). Second, vulva induction from the go-
nadal anchor cell (AC) selects three of these six cells to
form vulval tissue [6]. Molecularly, the HOX gene lin-39
defines developmental competence and establishes
P(3–8).p as vulval precursor cells (VPC) (Figure 1B)
[7, 8]. The epidermal growth factor (EGF)-like molecule
LIN-3 is secreted from the AC and induces P(5–7).p to
adopt one of two alternative vulval fates. P6.p has the
so-called 1� fate, generates eight progeny, and forms
the central part of the vulva. P(5,7).p have the 2� fate,
generate seven progeny each, and form the outer part
of vulva. The three other VPCs, P(3,4,8).p, have an
epidermal (3�) fate (Figure 1B). After cell ablation of
P(5–7).p, P(3,4,8).p can substitute for the other VPCs.

The size of the VEG varies greatly among nematodes
(Figure 1B) [9]. The largest VEG described to date is
that of P. redivivus of the Panagrolaimidae family, con-
sisting of eight cells, four of which participate in vulva
formation in wild-type animals (Figure 1B) [10, 11]. Of
the four additional competent cells, two are found in
the anterior and two in the posterior region. Compared
to P. redivivus, the VEG of C. elegans and other species
of the Rhabditidae family is altered in the posterior
region and consists of five or six cells [12, 13]. In
P. pacificus and its relatives, the VEG shows an addi-
tional alteration in the anterior body region. Only those
cells that eventually will form vulval tissue are able to
respond to the inductive signal from the somatic gonad
[14]. Specifically, the programmed cell death of P3.p
and P4.p in P. pacificus causes a reduction in the size
of the VEG.

C. elegans itself is an unusual nematode with regard to
the size of the VEG. The cell lineage of the anterior-most
cell of the VEG, P3.p, is variable within genetically ho-
mogenous populations and is polymorphic between
wild isolates [15]. In the laboratory strain N2, P3.p has
a 3� fate in 50% of the animals, whereas it is not part
of the VEG and fuses with the hypodermis in the remain-
ing 50% of the animals. Interestingly, several genes that
are involved in the regulation of vulva induction also
influence the P3.p cell fate decision. For example,
gain-of-function mutations in let-60/ras and loss-of-
function mutations in the synMuvA and synMuvB path-
ways expand the VEG and cause ectopic differentiation
of P3.p in nearly 100% of mutant animals [16]. Besides
those genes that have a role in the regulation of vulva
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induction, mutations in Cel-lin-22 also bring P3.p into
the VEG. Cel-lin-22 encodes a bHLH molecule of the
HAIRY family, and in Cel-lin-22 mutants, P3.p is a mem-
ber of the VEG in 100% of the animals [17].

We have used a genetic approach to study the evolu-
tion of the size of the VEG by screening for mutants that
expand the VEG in P. pacificus. We show that changes in
number, domain structure, and function of nematode
hairy-like transcription factors are involved in the evolu-
tionary restriction of the equivalence group. In P. pacif-
icus, mutations in a hairy and a groucho gene cause
the survival of P(3,4).p and expand the size of the VEG.
We show that Ppa-HAIRY and Ppa-GROUCHO repress
the Hox gene Ppa-lin-39 and thereby reduce the size
of the equivalence group. In C. elegans, no typical
HAIRY/GROUCHO module exists. Thus, changes in the
number, structure, and function of nematode hairy-like
transcription factors are involved in the evolutionary al-
teration of the vulva equivalence group.

Figure 1. Evolution of the Size of the Vulva Equivalence Group

(A) Schematic summary of nematode vulva development. The ven-

tral epidermis derives from 12 ectoblasts, named P(1–12) according

to their anteroposterior position.

(B) Schematic summary of the cell fate of ventral epidermal cells in

P. redivivus, C. elegans, and P. pacificus. The vulva is formed from

the progeny of the 1� (blue ovals) and 2� (red ovals) vulva precursor

cells. 3� cells (yellow ovals) are competent to form vulval tissue

but remain epidermal under wild-type conditions. In Panagrellus

redivivus, the vulva is formed from P(5–8).p with two additional

competent cells in the anterior and posterior body region, respec-

tively. In C. elegans, P(9,10).p fuse (F) with the hypodermis and are

not competent to form part of the vulva. In P. pacificus, P(3,4).p

die of programmed cell death (X) and further reduce the size of the

vulva equivalence group.

(C) Phenotype of Ppa-ped-5 and Ppa-ped-6 mutants expanding the

vulva equivalence group in the anterior body region. In ped-5,

P(3,4).p survive and remain epidermal, whereas in ped-6, P(3,4).p

survive and differentiate ectopically (red ovals).
Results

Mutations in ped-5 and ped-6 Expand the VEG
in P. pacificus

To study the molecular basis of evolutionary changes
that result in novel structures, it is essential to trace
the activity of individual genes. To analyze the genetic
regulation of the reduction of the VEG in the anterior
body region in P. pacificus relative to C. elegans, we
screened for P. pacificus mutants that exhibit an exten-
sion of the VEG. In various mutagenesis screens, we
identified multiple alleles of two genes that, when
mutated, expand the VEG. Specifically, mutations in
ped-5 and ped-6 inhibit the programmed cell death of
P3.p and P4.p without affecting apoptosis of P(1,2,9–
11).p (Figure 1C, Tables 1 and 2) [1]. Interestingly, the
cell fate of the two surviving cells differs between ped-
5 and ped-6. In ped-5 mutants, P(3,4).p survive, remain
epidermal, and are competent to adopt vulval fates.
This phenotype is fully penetrant in all three alleles
(Table 1, lines 1–5). In addition, P(3,4).p can form ectopic
vulval tissue in the multivulva background of Ppa-lin-17/
Frizzled [18]. Thus, the ped-5 mutant reconstitutes the
ancestral VEG and, by definition, represents an atavistic
condition.

Mutations in the gene ped-6 result in the survival of
P(3,4).p and cause the ectopic differentiation of both
cells into vulval tissue (Table 2). Although the survival
phenotype of P(3,4).p is fully penetrant, ectopic vulva
differentiation varies between both cells and the individ-
ual alleles. Usually, P4.p differentiates to a higher degree
than P3.p (Table 2). The ectopic differentiation of
P(3,4).p suggests that ped-6 is a multivulva mutation,
in which negative signaling is impaired as in Ppa-lin-
17/Frizzled [18]. To test whether ped-6 fulfills all the
criteria of a multivulva gene, we ablated the gonad at
hatching in eight of the ped-6 alleles. Indeed, vulva
differentiation by P(3–7).p was observed in all tested
ped-6 alleles (Table 2). Thus, ped-6 has a dual role; it

Table 1. Genetic Regulation of P(3,4).p Survival and Differentiation

in P. pacificus

Genotype

%P3.p

S

%P4.p

S

%P3.p

D

%P4.p

D n

1 Wild-type PS312 0 0 n.a. n.a. many

2 Ppa-hairy(sy344) 100 100 0 0.5 400

3 Ppa-hairy(tu96) 100 100 0 0 70

4 Ppa-hairy(tu97) 100 100 0 0 73

5 Ppa-hairy(sy344);

Ppa-groucho(tu102)

100 100 55 76 38

6 Ppa-lin-39(tu29) 0 0 n.a. n.a. 60

7 Ppa-hairy(sy344);

Ppa-lin-39(tu29)

8 29 0 0 24

8 Ppa-hairy(sy344);

Ppa-mab-5(tu357)

100 100 0 0 53

9 Ppa-groucho(tu102) 100 100 61 71 28

10 Ppa-groucho(tu102);

Ppa-lin-39(tu29)

16 40 n.a. n.a. 25

The P(3,4).p survival (S) and ectopic differentiation (D) were mea-

sured by cell-lineage analysis. P(3,4).p survival was analyzed in the

late J2 stage, differentiation in the late J3/early J4 stage. For the

Ppa-groucho(tu102); Ppa-lin-39(tu29) double mutant, differentiation

cannot be scored unambiguously because surviving P3.p and P4.p

cells migrate towards the center and replace the missing core VPCs.
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Table 2. Phenotype and Molecular Lesions of the ped-6/Ppa-groucho Alleles

Allele %P3.p S (n) %P4.p S (n) %P3.p D (n) %P4.p D (n) % Gid (n) Lesion

tu40 100 (50) 100 (50) 62 (21) 81 (21) 98 (40) Gln608OPAL

tu41 100 (50) 100 (50) 26 (97) 59 (97) 62 (50) G to A acceptor site intron 17

tu43 100 (50) 100 (50) 55 (33) 70 (33) 63 (40) not determined

tu44 100 (50) 100 (50) 43 (23) 74 (23) 66 (35) G to A donor site intron 10

tu45 100 (50) 100 (50) 48 (21) 86 (21) 40 (30) not determined

tu102 100 (50) 100 (50) 61 (28) 71 (28) 70 (20) deletion parts of intron 9 to 10

tu141 100 (50) 100 (50) 14 (28) 75 (28) 69 (35) deletion parts of intron 1 and exon 2

tu142 100 (50) 100 (50) 29 (24) 75 (24) 53 (40) Gly348Arg

The P(3,4).p survival (S) and ectopic differentiation (D) were measured by cell-lineage analysis. P(3,4).p survival was analyzed in the late J2 stage,

differentiation in the late J3/early J4 stage. Gonad-independent vulva differentiation (Gid) is measured after ablation of the gonadal precursor

cells Z1 and Z4 at hatching. Numbers in parentheses represent number of analyzed cells.
specifically regulates the cell death of P(3,4).p and
acts as a negative signal to prevent P. pacificus vulva
formation.

ped-5 Encodes a hairy-like Transcription Factor
that Does Not Exist in C. elegans

To identify the molecular nature of ped-5, we mapped
the locus by using the polymorphic reference strain
P. pacificus var. Washington [3]. ped-5 maps to the cen-
ter of chromosome IV between the molecular markers
S115 and S2. Another marker that maps to the same
region of the genome is S332, which is associated with
a hairy-like transcription factor (Figure 2A). When we
sequenced the complete hairy-like gene as a candidate
for ped-5, we found that it is mutated in all alleles of
ped-5 (Figures 2B and 2C). We identified mutations
resulting in stop codons of W120 in tu96 and sy344
and an amino acid replacement of R51S in tu97 (Figures
2B and 2C). We conclude that ped-5 is Ppa-hairy. Ppa-
hairy has a bona fide bHLH domain and a GROUCHO
interaction domain of the sequence WRPF at its C termi-
nus (Figure 2C). Interestingly, none of the 39 predicted
C. elegans bHLH proteins, including all six members of
the hairy subfamily, contain a GROUCHO interaction
domain [19]. Thus, bHLH proteins undergo changes in
their domain structure during nematode evolution.

ped-6 Encodes a groucho-like Gene
We mapped the ped-6 locus by using a similar strategy.
ped-6 maps to chromosome V close to the marker S223,
which is associated with the BAC clone PPBAC15-E02
of contig 66 of the physical map of P. pacificus (Fig-
ure 3A) [3, 4]. More accurate mapping revealed an inter-
val of five BAC clones between the markers S231 and
Figure 2. Molecular Cloning of Ppa-ped-5/hairy

Mapping has been performed with the polymorphic reference strain P. pacificus var. Washington [3, 4].

(A) Map position of Ppa-ped-5/hairy on chromosome IV between the SSCP markers S115 and S2.

(B) Protein domain structure of Ppa-HAIRY. Ppa-HAIRY has a typical bHLH domain (black box) and a GROUCHO interaction domain at its

C terminus (gray box).

(C) Ppa-hairy cDNA sequence as obtained from 50 and 30 RACE experiments. Introns are indicated by open triangles. Conceptual translation

starts with the first in-frame ATG codon after the SL1 splice acceptor site. Point mutations are indicated by asterisks. tu97 is an amino acid re-

placement of arginine 51 to serine. In tu96 and sy344, tryptophane 120 is mutated to a TGA and TAG stop codon, respectively.
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Figure 3. Molecular Cloning of Ppa-ped-6/

groucho

Mapping has been performed as described

for Ppa-hairy.

(A) Map position of Ppa-ped-6/groucho at the

tip of chromosome V between the markers

S231 and T188.

(B) Protein domain structure of Ppa-

GROUCHO with a typical interaction domain

(black box) and six WD repeats (gray box).

Point mutations are indicated by asterisks

and deletions by bars.
T188 in which ped-6 is located. To clone the ped-6 gene,
we performed shotgun sequencing of the BAC clones
between S231 and T188 and identified a sequence in
the PPBAC14-F11 clone with strong similarity to the
unc-37/groucho gene (Figures 3B, 4A, and 4B). unc-
37/groucho encodes a nuclear protein that has been im-
plicated as a corepressor of HAIRY and TCF/LEF-1 in
many animal systems. TCF/LEF-1-like molecules are
HMG box transcription factors acting downstream of
Wnt signaling [20].

Next, we cloned Ppa-groucho as a candidate gene for
the ped-6 locus and identified mutations in all tested
ped-6 alleles (Figure 4A, Table 2). We conclude that
Ppa-groucho is identical to ped-6 and have renamed
the gene accordingly. Ppa-GROUCHO is highly similar
to Cel-UNC-37/GROUCHO with an overall amino acid
sequence identity of 46% (Figure 4B). The highest amino
acid similarity is found in the six WD repeats of the pro-
tein, which were shown to be involved in protein-
protein interactions [21]. The variable domains in the
N-terminal part of the protein are less conserved but still
show significant similarity to Cel-UNC-37/GROUCHO.

Ppa-HAIRY and Ppa-GROUCHO Repress the Hox

Gene Ppa-lin-39
Given that Ppa-hairy and Ppa-groucho have an identical
phenotype with respect to P(3,4).p survival, we hypoth-
esized that they might affect the size of the VEG by
repressing, as a heterodimer, the Hox gene Ppa-lin-39.
Several independent observations support this hypoth-
esis. To determine whether Ppa-HAIRY can physically
interact with GROUCHO, we used a yeast two-hybrid
system. A full-length Ppa-HAIRY protein interacts with
nematode and insect GROUCHO (Figure 5A). One po-
tential target of the Ppa-HAIRY protein is the Hox gene
Ppa-lin-39, which specifies the VEG. Ppa-lin-39 mutants
have a vulvaless phenotype because of programmed
cell death of P(5–8).p (Table 1, line 6) [22]. To determine
Figure 4. P. pacificus ped-6 Gene Structure

and Alignment to C. elegans unc-37

(A) Ppa-groucho cDNA sequence as obtained

from 50 and 30 RACE experiments. Concep-

tual translation starts with the first in-frame

ATG codon after the SL1 splice acceptor

site. Introns are indicated by open triangles.

Point mutations are indicated by asterisks,

deletion mutations by lines. The WD repeats

are boxed.

(B) Amino acid comparison between Ppa-

GROUCHO and Cel-UNC-37/GROUCHO.
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whether Ppa-hairy and Ppa-groucho function in P(3,4).p
requires Ppa-lin-39 activity, we analyzed the respective
double mutants. The anterior cells P(3,4).p underwent
programmed cell death in Ppa-hairy(sy344); Ppa-lin-

Figure 5. Ppa-HAIRY and Ppa-GROUCHO Repress the Hox Gene

Ppa-lin-39

(A) Ppa-HAIRY, but not Cel-LIN-22, interacts with C. elegans or

Drosophila GROUCHO in a yeast two-hybrid assay. Ppa-HAIRY

and Cel-LIN-22 were fused to the Gal4 DNA binding domain (BD)

and Cel-GROUCHO and Drosophila GROUCHO were fused to the

Gal4 activation domain (AD) with the pGBKT7 and pGADT7 vectors

(Clontech, Palo Alto, CA). Interactions were tested by growth assays

on SD-Ade-His-Leu-Trp agar plates.

(B) Putative HAIRY binding site in the Ppa-lin-39 promoter. FUZZNUC

(http://bioweb.pasteur.fr/seqanal/interfaces/fuzznuc.html) analysis of

the Ppa-lin-39 promoter including 10 kb of upstream sequence re-

vealed the presence of four putative HAIRY binding sites (HBS)

(‘‘a’’ to ‘‘d’’), two of which are high-affinity binding sites. Beneath is

shown the nucleotide sequence of the predicted HAIRY binding

site ‘‘a’’ with the core hexanucleotide CACGCG. In HBS a mut, the

core hexanucleotide is mutated toward TTTGCG. In electrophoretic

mobility shift assays, GST-Ppa-HAIRY binds to oligonucleotides of

the wild-type Ppa-lin-39 sequence, but not the mutated site.

(C) Ppa-lin-39 transcript level is upregulated in Ppa-hairy mutants.

Transcript levels are given as arbitrary concentration unit ratios be-

tween lin-39 and b-tubulin as internal standard. RNA was prepared

from 120 J1 animals and experiments were carried out in duplicate.

Error bars represent standard deviation.
39(tu29) and Ppa-groucho(tu102); Ppa-lin-39(tu29) dou-
ble mutants (Table 1, lines 7 and 10). The partial rescue
of the cell-death phenotype in these double mutants is
due to the fact that Ppa-lin-39(tu29) is not a null allele.
We conclude that Ppa-hairy and Ppa-groucho function
requires Ppa-lin-39 activity. To explore the idea that
Ppa-HAIRY directly regulates Ppa-lin-39, we searched
for potential binding sites in the Ppa-lin-39 promoter
and found three putative HAIRY binding sites that con-
form to the sequence GGCACGYGHY (Figure 5C) [23].
We tested whether Ppa-HAIRY could bind these puta-
tive sequences by using electrophoretic mobility shift
assays (Figure 5B). Ppa-HAIRY caused a shift in mobility
of an oligonucleotide containing a 10 bp high-affinity
binding site present in the Ppa-lin-39 promotor but did
not cause a shift in an oligonucleotide in which the bind-
ing site had been mutated. By means of an unspecific
competitor in which three central base pairs had been
mutated, the binding of Ppa-HAIRY to the oligonucleo-
tide reoccurred, showing that the binding is specific.
Finally, we tested for deregulation of Ppa-lin-39 tran-
scription in Ppa-hairy(sy344) mutants by using quantita-
tive RT-PCR experiments (Figure 5C). In comparison to
wild-type animals, Ppa-lin-39 expression is upregulated
in Ppa-hairy(sy344) mutants animals (Figure 5C). Syn-
chronized Ppa-groucho mutants cannot be generated,
given their strong egg laying-defective phenotype;
quantitative RT-PCR experiments performed with mixed-
staged Ppa-groucho(tu102) mutant animals also suggest
a Ppa-lin-39 upregulation in comparison to wild-type
(data not shown). We conclude that Ppa-hairy and
Ppa-groucho require Ppa-lin-39 for the function in
P(3,4).p. Ppa-HAIRY can form a heterodimer with
GROUCHO molecules in a yeast two-hybrid system
and binds to Ppa-lin-39 promoter elements in vitro.
Ppa-lin-39 transcription is upregulated in Ppa-hairy
and Ppa-groucho mutants. These experiments suggest
that the anterior border of the P. pacificus VEG is actively
restricted by Ppa-HAIRY- and Ppa-GROUCHO-medi-
ated repression of the Hox gene Ppa-lin-39.

Cel-LIN-22 Is Not an Ortholog of Ppa-HAIRY and
Does Not Physically Interact with GROUCHO

The experiments described above address the
restriction of the VEG in the anterior body region of
P. pacificus, but not the control of the VEG in the model
organism C. elegans. In C. elegans, the cell lineage of the
anterior-most cell of the VEG, P3.p, is variable within ge-
netically homogenous populations and is polymorphic
between wild isolates [15]. In the laboratory strain N2,
P3.p has a 3� fate in 50% of the animals, whereas it is
not part of the VEG and fuses with the hypodermis in
the remaining 50% of the animals (Table 3, line 1).
Cel-lin-22 encodes a bHLH molecule of the HAIRY family
that affects the anterior border of the VEG [17, 24]. P3.p

Table 3. Genetic Regulation of the Vulva Equivalence Group by

Cel-lin-22 and Cel-mab-5

Genotype P3.p 3� %

1 Wild-type N2 16/30 53

2 Cel-lin-22(mu2) 30/30 100

3 Cel-lin-22(mu2); Cel-mab-5(e1239) 13/24 54

http://bioweb.pasteur.fr/seqanal/interfaces/fuzznuc.html
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Figure 6. Structure and Function of Nematode and Insect HAIRY-like Proteins

(A) Comparison of the domain structure of HAIRY-like proteins. Ppa-HAIRY and Drosophila-HAIRY contain a bHLH (brown and red) and a

GROUCHO interaction domain (green). Cel-LIN-22 and Ppa-LIN-22 both miss the GROUCHO interaction domain. Other members of the C. ele-

gans REF-1 family contain two bHLH domains, a feature not known outside Caenorhabditis nematodes.

(B) Amino acid sequence comparison of the bHLH domain of Ppa-HAIRY, Cel-LIN-22, and Ppa-LIN-22. The loop region is expanded in Ppa-

HAIRY (brown box). Ppa-LIN-22 and Cel-LIN-22 share 12 unique amino acids, whereas the two P. pacificus proteins share only four unique amino

acids in the bHLH domain.

(C) Neighbor joining tree of the bHLH domains of Ppa-HAIRY, Drosophila-HAIRY, the C. elegans and P. pacificus LIN-22 proteins, and the two

bHLH domains of Cel-REF-1 indicates that Ppa-HAIRY is not the ortholog of Cel-LIN-22.
is a member of the VEG in 100% of Cel-lin-22 mutants,
resulting in a slight expansion of the VEG at the popula-
tion level (Table 3, line 2). Therefore, it could be assumed
that Cel-lin-22 fulfills a similar function in the specifica-
tion of the VEG as Ppa-hairy in P. pacificus.

A comparison between their protein sequences
reveals that Ppa-HAIRY and Cel-LIN-22 have several dif-
ferences, indicating that Cel-LIN-22 is not the ortholog
of Ppa-hairy (Figure 6). The P. pacificus genome en-
codes another bHLH protein that is more closely related
to Cel-LIN-22 than Ppa-HAIRY, and we have designated
this gene as Ppa-LIN-22. Ppa-LIN-22 and Cel-LIN-22 dif-
fer from Ppa-HAIRY and other HAIRY-like proteins in
that they do not contain a GROUCHO interaction domain
(Figure 6A). Ppa-HAIRY differs from the LIN-22 proteins
by an extended loop and several unique amino acids in
the bHLH domain (Figure 6B). Finally, there is no other
protein encoded in the C. elegans genome that has
a higher similarity to Ppa-HAIRY.

To test whether the absence of the GROUCHO inter-
action domain in Cel-LIN-22 results in the failure of the
protein to interact with GROUCHO, we used the yeast
two-hybrid system and carried out similar experiments
as described for Ppa-HAIRY. Indeed, Cel-LIN-22
does not interact with Drosophila GROUCHO or Cel-
UNC-37/GROUCHO (Figure 5A). We conclude that the
short C-terminal motif is crucial for the interaction with
GROUCHO and that the loss of this interaction domain
in Cel-LIN-22 abrogates the physical interaction with
GROUCHO molecules. Accordingly, Cel-unc-37 does
not have a P3.p phenotype and was shown to be dis-
pensable for Cel-lin-22 function [25, 26].
The Cel-lin-22 Vulva Phenotype Requires a Different

Hox Target Gene
The Hox gene Cel-lin-39 is necessary and sufficient
for the formation of the VEG in C. elegans and has
a role that is largely similar to that of Ppa-lin-39 [7, 8,
22]. Genetic studies did not provide any evidence
that Cel-lin-22 would regulate Cel-lin-39. Instead,
genetic studies showed that the primary target of
Cel-lin-22 during male development is another Hox
gene mab-5, which encodes an Antennapedia-like
molecule [27].

To determine whether the vulva phenotype of the
Cel-lin-22 mutant could be accounted for by changes
in Cel-mab-5 expression, we studied Cel-lin-22; Cel-
mab-5 double mutants. Indeed, the expansion of the
VEG as observed in Cel-lin-22 single mutants is com-
pletely abrogated in Cel-lin-22; Cel-mab-5 double mu-
tants, resulting in a wild-type vulva pattern (Table 3,
line 3). These results allow two major conclusions. First,
the expansion of the VEG in Cel-lin-22 depends only on
the deregulation of Cel-mab-5. This is consistent with
earlier reports of a P3.p fusion defect in animals in which
Cel-mab-5 is overexpressed under the control of a heat-
shock promoter [27]. Second, Cel-lin-22 is not directly
involved in the regulation of the anterior border of the
VEG in C. elegans N2 animals because the VEG is spec-
ified normally in the Cel-lin-22; Cel-mab-5 double mu-
tant. In conclusion, Ppa-hairy and Cel-lin-22 are two
nonorthologous nematode genes that encode bHLH
proteins with different domain structures and that have
different functions and different Hox target genes in
vulva development.
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P(3,4).p Survival in Ppa-hairy Does Not Require
Ppa-mab-5

Finally, we wanted to know whether Ppa-hairy regulates
Ppa-mab-5 in a way similar to the one described for
Cel-lin-22 and Cel-mab-5. Ppa-mab-5 mutants have
been described previously and cause strong defects in
the postembryonic mesodermal lineage and the ectopic
vulva differentiation of the posterior epidermal cell P8.p
[28, 29]. However, Ppa-mab-5 mutants do not alter
the cell-death pattern of ventral epidermal cells. Ppa-
hairy(sy344); Ppa-mab-5(tu357) double mutants have
an additive phenotype. P(3,4).p survive in all double mu-
tant animals and the ectopic differentiation is similar to
Ppa-mab-5 single mutants (Table 1, line 8). We conclude
that Ppa-HAIRY does not require Ppa-mab-5 for the reg-
ulation of the cell death of P(3,4).p. This result provides
additional evidence that Ppa-hairy and Cel-lin-22 have
different target genes and function by different molecu-
lar mechanisms.

Discussion

Our experiments provide genetic, molecular, and bio-
chemical evidence that a complex of Ppa-HAIRY and
Ppa-GROUCHO determines the size of the VEG. The
proposed mechanism resembles the function of HAIRY
and GROUCHO in insects and vertebrates. Although
the VEG in P. pacificus is obviously derived, it is estab-
lished by a molecular module that no longer exists in
C. elegans. Indeed, multiple studies indicate the ab-
sence of a typical HAIRY/GROUCHO module in C. ele-
gans [19]. First, C. elegans does not have an ortholog
of Ppa-hairy. Although P. pacificus and C. elegans share
a lin-22 gene, Ppa-hairy is unique to P. pacificus. This
is most likely the result of a complete loss of this gene
in the C. elegans lineage. Alternatively, the Ppa-hairy
gene might be the result of a gene duplication in the
P. pacificus lineage. The available whole-genome se-
quences of other Caenorhabditis species do not contain
Ppa-hairy-like genes, suggesting that the potential gene
loss occurred earlier in the evolutionary lineage leading
to C. elegans. The upcoming genome-sequencing pro-
jects of nematodes that represent more ancestral phylo-
genetic lineages, such as Brugia and Trichinella, might
be able to shed new light on this question (http://www.
nhgri.nih.gov/12511858). Second, the five additional
hairy-like genes of C. elegans, the so-called ref-1 family,
are unusual. They contain two bHLH domains, a feature
so far known only from C. elegans, and none of them
contains a GROUCHO interaction domain (Figure 6A)
[19]. Third, Cel-unc-37/groucho does not have a pheno-
type similar to Cel-lin-22 and Cel-ref-1, the two hairy-like
genes that result in cell-fate specification defects when
mutated [25]. Fourth, none of the hairy-like genes in
C. elegans is directly involved in the regulation of the
VEG in the anterior body region. Although these four
arguments strongly suggest the absence of a Ppa-hairy
ortholog in C. elegans, rapid sequence divergence might
prevent the recognition of this gene. Therefore, only
a phylogenetic analysis with additional whole-genome
sequence data (once available) can ultimately determine
the complete absence of a hairy ortholog in C. elegans.

Experiments described in this study suggest that the
vulva phenotype of Cel-lin-22 results from the ectopic
expression of Cel-mab-5. Ectopic Cel-MAB-5 expres-
sion prevents cell fusion of P3.p, a function that differs
from its role in regulating cell fusion in the posterior
VPCs P7.p and P8.p [30]. We favor a model in which
the anterior border of the VEG in C. elegans depends
on stochastic fluctuation of LIN-39 activity. This is sup-
ported by the observation that P3.p fusion varies
strongly between natural populations of C. elegans
[15]. Other than these natural populations, only multi-
vulva mutations in the EGF, Wnt, and synMuvB path-
ways bring P3.p into the VEG [16].

This study concentrates on the cell-survival pheno-
type of Ppa-groucho that causes an extension of the
VEG. In addition, Ppa-groucho mutants show a multi-
vulva and gonad-independent differentiation pheno-
type, indicating a Ppa-hairy-independent role of Ppa-
groucho as part of a negative signal that prevents vulva
formation in P. pacificus. Previous studies revealed that
vulva formation in P. pacificus requires two patterning
aspects that strongly differ from C. elegans: multiple
cells of the somatic gonad are involved in vulva induc-
tion in P. pacificus, whereas vulva induction in C. ele-
gans requires only the AC [6, 31]. In addition, a negative
signal in P. pacificus counteracts vulval induction by the
somatic gonad, which is, in this form, unknown from
C. elegans. Wnt signaling is part of this negative signal-
ing system in P. pacificus [18]. The phenotype of Ppa-
groucho mutants and the known interactions of WNT
and GROUCHO in other animal systems suggest that
Ppa-GROUCHO acts downstream of or in parallel to
Wnt signaling and functions as a corepressor of the neg-
ative signal in P. pacificus. This function of GROUCHO is
independent of the HAIRY/GROUCHO module-depen-
dent patterning of P(3,4).p, which occurs much earlier
in larval development. Future studies will reveal whether
the different regulation of LIN-39 in both nematodes is
connected to the different downstream functions, such
as the regulation of cell fusion (C. elegans) versus cell
death (P. pacificus).

Conclusion
The comparison between P. pacificus and C. elegans
indicates two major differences in the patterning mech-
anisms underlying vulva formation. First, the HAIRY/
GROUCHO module is used in P. pacificus to restrict
the anterior border of the VEG, but is absent from
C. elegans. Second, vulva induction and the role of
Wnt signaling in this process have been substantially
modified during nematode evolution [18]. Thus, changes
of the inductive properties of the gonad and the compe-
tence of the responding epidermis involve the recruit-
ment of distinct molecular modules (HAIRY/GROUCHO)
and changes in gene function (LIN-17/FRIZZLED).

Experimental Procedures

Nematode Strains and Cultures

Worms were grown on 5 cm NG agar plates seeded with OP50, a

uracil-requiring mutant of E. coli [32]. The following strains were

used in this study: P. pacificus PS312 (the wild-type strain) is a deriv-

ative of an isolate from Pasadena, CA; P. pacificus PS1843 is iso-

lated from Port Angeles, WA [33].

Cell Ablation Experiments

Animals were picked into M9 buffer placed on a pad of 5% agar in

water containing 10 mM sodium azide as anesthetic. All ablation

http://www.nhgri.nih.gov/12511858
http://www.nhgri.nih.gov/12511858
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experiments were carried out 0–1 hr after hatching of the larvae

(20�C) and were carried out as described elsewhere [34].

Mutagenesis

Mixed-stage animals were washed off the plates in M9 buffer and

ethyl methanesulphonate (EMS) added to a final concentration of

50 mM for 4 hr at 20�C. The suspension was washed in M9 five times,

and the worms were spotted onto the surface of NG plates. After

1 hr, excess liquid had been absorbed and individual motile J4 her-

maphrodites were picked individually to plates. In the F2 generation,

egg laying-defective mutants were isolated and their progeny were

reanalyzed for vulva defects by Nomarski microscopy. Mutant

hermaphrodites were backcrossed multiple times with wild-type

males. Complementation tests were carried out with morphological

markers [35].

Mapping and SSCP Detection

For mapping, mutant hermaphrodites in the California background

were crossed with males of the Washington strain. To extract geno-

mic DNA, F2 mutant animals were picked to single tubes containing

2.5 ml of lysis buffer (50 mM KCl; 10 mM Tris-HCl [pH 8.3]; 2.5 mM

MgCl2; 0.45% NP-40; 0.45% Tween; 0.01% gelatin; 5 mg/ml Protein-

ase K) and incubated for 1 hr at 65�C, followed by inactivation of the

Proteinase K at 95�C for 10 min. To assign linkage of a mutation to

a certain chromosome, two representative SSCP markers per chro-

mosome were tested against 42 Washington-backcrossed mutant

animals. For SSCP detection, PCR samples were diluted 1:1 in dena-

turing solution (95% formamide, 0.1% xylene cyanol, 0.1% bromo-

phenol blue), denatured at 95�C for 5 min, and loaded onto a

GeneGel Excel prepoured 6% acrylamide gel (PharmaciaBiotech,

Piscataway, NJ). Gels were fixed and silver stained to detect

the DNA.

Quantitative PCR Experiments

120 J1 animals were picked into 15 ml of 1:10 diluted single worm

lysis buffer. RNA was extracted with 100 ml of TRIZOL with a repeated

freeze-thaw protocol in liquid nitrogen. RNA was reverse transcribed

in 20 ml total volume reaction (Invitrogen) with negative controls with-

out reverse transcriptase included for each sample. Quantitative

PCR was performed on a Roche LC480 Light Cycler with the manu-

facturer’s SYBR green PCR mix. Primer concentrations were

0.5 mM.

Electrophoretic Mobility Shift Assay

A full-length Ppa-hairy cDNA fragment was cloned into pGEX4-T1;

GST-HAIRY protein was isolated with standard methods on a

AKTAprime chromatography system (Amersham, Uppsala, Swe-

den). Complementary oligos were annealed and end labeled with

polynucleotide kinase (PNK). 1.5 pmol of labeled oligonucleotides

was used in bandshift experiments. Wild-type and mutated unla-

beled oligonucleotides were used at the fold amounts indicated in

competition experiments.
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